Glossary for Marking PointsScience

The Assessment Objectives

Use this to identify the skill being assessed.

AO1	Knowledge	Marks for recall. Look for specific facts, definitions, or equations.
AO2	Application	Marks for using knowledge in a specific context.
AO3	Analysis	Marks for evaluation, data interpretation, and judgment.

The Marking Codes

Common abbreviations used by examiners to denote where marks are earned.

М	Method mark	Awarded for a correct method that could lead to a correct answer.
Α	Accuracy mark	Awarded for a correct answer. Usually depends on the 'M' mark being correct (implied or explicit).
В	Independent mark	Awarded solely for a specific fact or answer, independent of the method used.
ecf	Error carried forward	Marks awarded for correct working using an incorrect value from a previous step.
()	Brackets	Content inside brackets is non-essential context; the mark is awarded without it

The Insider Rules

How to handle specific student behaviors that aren't explicitly in the question.

The "List Principle" (Right + Wrong = Wrong)

If a student provides more answers than asked for (e.g., "Name two..."), apply the Right + Wrong rule.

- Each error or contradiction negates a correct response.
- Example: "Iron, Steel, Tin" (for magnetic materials).
 - Iron (Correct) + Steel (Correct) + Tin (Wrong) = 1 Mark awarded (2 correct 1 error)
- Exception: Neutral responses are ignored and do not penalise the score.

Glossary for Marking PointsScience

Phonetic Spelling

- ACCEPT: Phonetic spelling where the intention is clear.
- **REJECT:** Spelling that creates confusion with another technical term (e.g., mitosis vs. meiosis or glycogen vs. glucagon).

Calculations & "bald" answers

- Full marks: Awarded for a correct numerical answer, even with no working shown.
- Zero marks: Awarded for a correct final answer derived from incorrect working.
- **Stages:** Marks are awarded for each correct stage; students can omit steps but pick up marks later if the subsequent step is correct.

Chemical Symbols

Full credit is given if a student writes a correct chemical formula/symbol instead
of the name, provided it is appropriate in context.

Decoding the Vocabulary

Understanding the examiner's instructions to you.

Allow	Creditworthy alternative answers that are not the primary answer listed.
Ignore	Information that is irrelevant but not wrong. It does not gain a mark, but it does not lose one.
Do Not Accept	A specific wrong answer that negates the mark, even if the correct answer is present alongside it.

The "Ladder" Approach

Don't count points. Find the level.

Step 1: Determine the Level

- Start at the bottom level (Level 1) and read up. Does the answer meet the descriptor?
- Use a "Best Fit" approach. If the answer is mostly Level 2 but has some Level 3 content, place it in Level 2 but award high marks within that band.
- Do not penalise small, specific errors if the overall quality meets the level descriptor.

Step 2: Determine the Mark

• Compare the student's work to the "Standardising Material" (exemplars) to decide if it is at the top or bottom of the level

